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Abstract 

A model for a description of interaction, which involves particle creation, can be given as 
follows: 

(1) A smooth finite-dimensional manifold M constitutes the configuration space of 
some interacting system. 

(2) The concept of an interacting field is formulated in terms of two-component 
objects which consist of a physical and a topological field component which are 
'derived' from M. 

(3) Interaction is described in terms of the topological linking number of the topo- 
logical field components and in terms of the intrinsic field equations. 

This scheme provides a geometrical description of strong interactions and gives a structural 
analysis of Gell-Mann current fields. A differential topological formulation of Noether's 
Theorem can be obtained. Moreover a consistent description of electromagnetic interactions 
which sheds a new light on the mechanism of virtual processes is available. This description 
results in an estimate of the fine structure constant c~ = e2/(h, c). 

1. Introduction 

The ma themat i ca l  diff icult ies connec t ed  wi th  the  quant isa t ion  o f  non-l inear  
field theories  are p resumably  due to  a formal ism which  is t rying to  describe 
non-l inear  systems, i.e. in teract ing fields, in terms o f  l inear  opera tors  (asymp- 
tot ic  free fields, ' bare '  fields etc.)  and l inear conf igura t ion  spaces. Other  key  
problems arise in connec t ion  wi th  in te rac t ion  Hamil tonians  such as H I  = ejuA u, 
fu = ~ 7 ~  (A ~ and ~ stand for  the quant i sed  p h o t o n  and e lec t ron  field re- 
spectively),  which  represent  the mos t  basic in terac t ions  o f  f ield theory ,  i.e. the  
current - type  interact ions.  It  is known,  however ,  that  the expression for HI 
fails to  make  mathemat ica l  sense because o f  the lack o f  meaning for  trflinear 
products  o f  operator-valued fields. 
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To arrive at a way of treating interacting systems in an intrinsic fashion, it 
seems reasonable to proceed within some suitable geometric framework. It is 
our aim, therefore, to provide a formulation of the concept of an interacting 
field in terms of pure geometry which consists of 

(1) An arbitrary finite-dimensional smooth configuration manifold M 
whose differential geometric structure accounts for the interaction 
in conjunction with 

(2) fields, which are defined as pairings 

(coP, cp) (v. Westenholz, 1972) (1) 

(cop C FP(M), the space of p-forms on M and cv E Cp(M), the space 
(I) of p-chains on M and 

(3) a description of interacting fields of type (1), (col 1, c 1I), (co21, c21), 
. . .  (COn 1, Cnl), (.Oi I E.FI(.M), ca 1 E C1 (M), in terms of the topological 
linking number l(ca ~, cl J). The field equations which correspond to 
this interaction are obtained in an intrinsic form by means of the 
coordinate-free operators d (exterior differentiation), ix  = _1 (con- 
traction by a vector field X) and L x (Lie derivative ), such that only 
the 'physical' field component co of (1) is involved. 

With a certain amount of over-simplification one may say that the present 
model provides an approach to an elementary particle description where particle 
physics is reduced to topological issues. A first phenomenological programme 
along these lines has heen achieved by Jehle (1971). Our model departs, how- 
ever, in important ways from his treatment. 

Remark 1. With an approach to field theory in terms of smooth manifolds 
it is impossible to describe a field by giving its components with respect to a 
single set of coordinates. An intrinsic description of physical laws is provided, 
however, in terms of  differential forms and the corresponding dual objects, 
the vector fields. The case of skew-symmetric covariant tensor fields, which 
are the most frequently encountered in physics, accounts for this. Electro- 
magnetic theory, the Hamitton-Jacobi theory, the Yang-Mills theory, etc., 
can be given a neat and concise formulation in terms of these intrinsic objects. 

Remark 2. The concept of a topological field (1) is illustrated by a conserva- 
tive force field (6o 1, Cl), 601 = Zi Fi dx*, where fc" 6ol = 0 Vc 1, c1: closed curve, 

0 • 1 t yields 3 ~: co = - d ~ ,  ~ E F (/14). That is, the force field (co, cl)  may be 
regarded as being associated with some geometry M, subject to the constraints 

Ill(M) = H I ( M  ) = H I ( M )  = 0 ( 2 )  

(III(M) denotes the Poincar6 group, Hi(M) and Hi(M) the first homology and 
cohomology groups of M respectively). More generally, fields of the type (1) 
may be regarded as being 'derived' from some suitable geometry. This amounts 
to saying that the study of the homotopy groups IIp(M), p = 1, 2 , . . . ,  the 
homology and cohomology groups Hp(M) and HP(M) of M exhibit which way 
the properties of  the geometry imply the properties of some field of  type (I). 

This issue of  potential function can also be discussed in terms of vector 
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fields and homology. Suppose M is equipped with a Riemannian metric ( , ) 
and 

x e  X(M) (3) 

is a vector field. If  (3) corresponds to the closed one form cox, given by 

(X ,  Y )  = cox(Y)  V Y  E Tp(M) Vp E M  (4) 

then cox(Y) is called the work of the field of force Y. Either of two cases may 
occur: (1) If  cox is homologous to zero in the one-dimensional cohomology 
group Hi(M, R ) ,  then co = - d ~ ,  i.e. 

X = - grad 9; (grad ~,Y) = d~p(Y) (3) 

or (9) if cox is not homologous to zero i n H  1 (M, R) then the potential is 
'multi-valued', i.e. it is defined up to multiples of periods. 

The aim of this paper is to study certain classes of  fields of the type (1) and 
to investigate what new insight into physics can be gained. In Section 2, we 
show that a Cartan-Euler field of type (1) essentially characterises the whole 
dynamics of  some mechanical system. A differential topological version of 
Noether's theorem, which extends to systems with infinite degree of freedom, 
is thus obtained. Section 3 is devoted to the study of Aharanow-Bohm fields 
which are related to the Aharanow-Bohm effect (v. Westenholz, 1973; Aharonow 
& Bohm, 1959). In studying Aharanow-Bohm fields one is led to the concept 
of path-dependent matter field variables (Mandelstam, 1962), which motivate 
vividly an approach to Yang-Mflls fields (which are generalised Aharanow- 
Bohm fields) in terms of some curved geometry. As the differential geometric 
structure involved will be some fibre bundle, it turns out, that, on a rigorous 
level, strong interactions can be described with recourse to a formal correspond- 
ence principle between fibre bundles and the Yang-Mills theory. This issue will 
be developed in Section 4. Our Section 5 is devoted to a differential topological 
version of Noether's theorem for systems with infinite degrees of freedom. 
This leads to a structural interpretation of currents within the framework of 
fibre bundles and introduces Gell-Mann current fields which are of the type 
(1). In our final section, Section 6, interacting quarks, represented by the 
linkage of quantised loops, which are the topological Yang-Mills field com- 
ponents, are analysed. Particularly for electromagnetic interactions, i.e. for 
Aharanow-Bohm fields, the magnitude of the interaction constant 
a = (e2/hc) is obtained. 

2. The Cartan-Euler FieM 

A topological Cartan-Euler field can be defined by 
(0, cl) (s) 

where 
0 = p~dq i - H.  d t  E FI(T*M x R) (6) 

denotes the Cartan 1-form and ci E CI(T*M x R) the one-chain which corre- 
sponds to the Euler extremal of the corresponding variational problem on the 
evolution space P = T*M x N (T*M denotes the cotangent bundle). It turns out, 
that the field (5) accounts for the whole dynamics of a system by virtue of  
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Hamilton's variational principle, which states that the integral of action 
S = fe~ pidq i - H . d t  (which corresponds to the usual form f ( T  - V). dt  in 
which this principle is quoted) has a stationary value for the natural motion 
when compared with adjacent motions having the same end events. 

The corresponding canonical variational problem is defined by the manifold 
P = T*M x R, the Caftan 1-form (6), a differential ideal I C F(M) and an 
integral manifold (if, N) (Hermann, 1968). This leads, in terms of the adjacent 
diagram, 

....... "~ ....... ~ T * M  x N .." TM x R .......... 

[a,b] N , M ) M 

3 '= [a, b] - ~ M T E C  1. 
= ~ o 7, ~ = Legendre transforn 

~f (q  1 qn 41 ' ' "  qn, t) = 

(q n aL 3L ~ 
1 . . .  q , aq--al"" "aqn  ' " 

L is a regular Lagrangian. 
Figure 1. 

to the study of the behaviour of the functional 

7-+1(7) = ~ L ° Z / d t =  .i 7 *0= f 0 (7) 
[a, b] [a,b] "~.[a, b] 

which must be stationary. 
Formula (7) is the abridged notation for 

(0,7.[a ,b])-~ f 0 (8) 
~7,[a,b] 

The first variation formula yields the relationship 

X_A dO (L)[c~ = 0 (_J denotes the contraction of dO by 
the vector field X) (9) 

That is, there is a unique vector field X satisfying (9) on T*M x N, called the 
Euler vector field. The corresponding differential equations of motion are the 
Euler-Lagrange equations, c 1 is the extremal of dO(L) (or equivalently of the 
Lagrangian L) iff (9) holds. In summary: 

A topological model for interacting mechanical systems is given in 
terms of Scheme (I) of Section 1 by: 

(1) The differential geometric structure of the evolution space 
P = {(p, q, t)} = T*M x R in conjunction with 

(2) the Gartan-Euler field (0, cl) where 
0 = Pidq i - H.  dt  

cl  = [a, b] 
and 

(3) the Euler-Lagrange differential equations of motion 
X 2 dO(Z)lc, = O. 

This model fully accounts for the dynamics of a system under the 
influence of some force field co = F t. dq i = - d K  
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R e m a r k  3. On account of  V = V(q) ,  which represents the influence of a 
potential, the interaction is already characterised without having recourse to 
the linking number. 

R e m a r k  4. As shown by Gallissot (1951), Newton's equations of motion 
can be obtained from some Galilean-invariant exterior form, which in fact is 
just the exterior derivative of  the Cartan form (6). Indeed, let P = T * M  x R = 
R 3 x R 3 x R be the evolution space for a particle and 

_~-'  8H _~ aH ~ 0 

X-z_.,Op i Oqi 8q~ ~Pi + at 

then one has i xco  = 0 for co = dpidq  i - d H . d t .  Moreover 

Proposit ion 1 (Gallissot). Newton's law of motion for a particle m 
under the influence of a force field F = (Fi)  is given by 

X=X-'2., 3 ~ 3 i x ~ = X _ J ~ - O  where ~ x / + - - + - -  (10) 
Ov i at 

co = ~ 8 i j ( m  . d v i - F i d t )  A (dx] - vJ .d t )  

(Galilean-invariant 2-form) (11) 

Proof .  By virtue of the definition i x w  = X a [ a w / b ( d x a ) ]  we obtain: 

i x  w =- 0 ~ m .dr  i - F i .d t  = (dx i - v i . d t )  = 0 

Expression (11) is related to Cartan's form (6), since (11) yields: 

o3 = mSi i  dv i A dxJ - mSi j  vidv ! A d t  + 8 i j F i d x  j A d t  

Ifdo~ = 0, then ~o 1 = 6i jF idxJ  = ~ i F i d x  i must be closed. 
Since the first Betti number 

~1(~3 X ~3 X R) =0::~ 3V:  col=~Fidxi=--dV 

(11) =~ co = mgi jdv i  A dxJ + Sij [F idx i  - m y / d r  i] ^ d t  

= m d~ i A dM + [ -  d V -  mvJ dr J] d t  

= m dvJ A d x  i - d H  ix d t  

= d_pi .dq  i - dHix d t  = dO(L),  

since H = ½my i2 + V,  d H  = Z mvi  dv i + d V .  

It has been emphasised in our introductory section that the differential 
geometrical set-up is also well suited to dealing with Noether's theorem. We 
are going to analyse this point now. 

Let a state of  a system be defined to be a point of the cotangent bundle 
T*(M) in the sense that giving such a state at one time determines the future 
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time evolution o f  the system. More precisely: a state (q l(t) . . . . .  qn(t), 
Pl(t) • • • pn(t)) at a time t > 0 is uniquely determined by 

(a) a physical law Ut E {Utl -oo < t < +oo} (the dynamical one-parameter 
group of  the system), and 

(b) the state ( q l ( 0 ) . . .  qn(O). . ,  pn(O)) at t = 0. 

That is, ( q l ( t ) . . .  Pn(t)) = Ut(ql (O) . . .  Pn(O)) denotes the state at t > 0 and 
each (q(t), p(t)) lies on one and only one Ut-orbit 

0 0 ,  q) = {Ut(P, q)l(P, q) E T*M fixed) t E (--o% +oo) 

This means that the points (p, q) E T*M are in one-one correspondence with 
the Cauchy data for the differential equations determining the time evolution 
o f  the system. Alternately, a state of  a system may be considered as a curve in 
P= T*Mx •, that is, an integral curve of  the vector field 

a 

X . aqi ~qi ~pi t. ~t 
I 

That is, we have 

Definition 1. A state in (T*M x R~ dO(L)) is any maximal submanifold 
c C T * M x  R such that X d  dO(L)lc = 0 VX .  

In this context one can deal with problems admitting given groups of  sym- 
metries. Let P be the phase space and G any Lie group. Diff(P)  denotes the 
group o f  aI1 C~-diffeomorphisms o f  P. Symmetry groups of  some systems 
shall be specified as follows: 

Definition 2. An action of  G on P is a group homomorphism G ¢-> Diff(P) 
such that the mapping 

ca: G x P - , e :  (g ,p)  -~ ~(g)(p) is C -  (12) 

Condition (12) defines a dynamical symmetry group of some dynamical system 
characterised by  a Lagrangian L iff  G preserves the form co = dO(L). Otherwise 
stated 

G is called a group of symmetries ~* ~0*(g)co Vg = co 

i.e. G leaves co invariant. That is 

Diff(P, co):= {~o E Diff(P)[~*co = co) (13) 

is the generalised symplectic group. 
The infinitesimal counterpart  to Definition 2 is 

I Definition 3. A vector field on P (i.e. Y ~ ~ (P)) generates a symmetry 
of  L (i.e. is called an infinitesimal symmetry of L)  if 

Y(dO(L)) = 0 (14) 
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Constants of motion are now obtained by 

Proposition 2 (Noether). Let Y E &og(g) C 3¢ (P) be a symmetry field 
of L. Then there exists an observable fwhich is a constant of motion, 
i.e. which is constant along the characteristic curves ofclO(L). 

Proof. Suppose/31(P ) = 0, 

Y(dO) = Y _3 d(dO)+d(Y_A dO)= 0 

=~ d( Y _l dO)= 0 =~3 f E F ° ( P )  : Y.A dO = d f  =~ df(X)  

= X( f )  = V _A dO(X) = dO(Y, X )  = -dO(X,  Y) 

= - x _ J  dO(r3 = o 

when restricted to c (formula (9)). 

xq)  = o (15) 

Relationship (15) clearly characterises an integral of some system, i.e. a func- 
tion f defined on phase space P such that f is constant on trajectories. 

Remark  5. The conventional approach to Noether's theorem consists in the 
following statement: If G is any n-parameter symmetry Lie group, i.e. if G 
leaves the Hamiltonian H E F°(P) invariant, 

9*(g)H = H o 9(g) = H (16) 

there exists n conservation laws. For example the group of rotations SO(3) 
induces symplectic diffeomorphisms on the phase space T* R 3 ~-- ~6 which 
yields the angular momentum L to be conserved. The relationship (16) is true 
iff 

L u= r(m=0 VYEd~g(B)C~(P) (17) 

It is known (Hermann, 1968) that the Hamilton-Jacobi theory can be regarded 
as the study of the characteristic curves and the maximal integral manifolds of 
the Hamilton form 

co = dpi dq i -  dH. dt = dO(L) (18) 

This amounts to saying that a geometric interpretation of  the Hamilton-Jacobi 
partial differential equation can be obtained in terms of the Cartan field 
0 = pidq  i - H .  d t  and the following 

Proposition 3. IfS(q, t) is a solution of the Hamilton-Jacobi equation 
(3S/3t)  +H(qi, ~S/bqi, t) = 0 then there is an injection ~ :N-> T * M x R  
which defines an integral submanifold of the Hamilton form (18). Con- 
versely, if 

~ * c o  = 0 

and 
m ( M x  R)= o 

~ 3 S :  q;*O = dS 

S is a solution of  the Hamilton-Jacobi equation. 

(19) 

(20) 
(21) 
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Proof. '=; By virtue of  the adjacent diagram 2, where ( q l . . .  qn, {t 1 " . .  on, t) 
denote coordinates on TM x R, (q 1 . . .  qn, pl . . . pn, t) denote coordinates on 
T*M x R,  ~o is defined on U x / ,  U C M open, by 

Or x id) ~0 (q, t) = (q, t) and 4 = ~ o ~0 

qi o 4(q, t) = qi(q, t) 4*(qi) = qt 
and  t o 4 = 4 * t  = t 

pi o 4(q, t) = pi(q, t) 4*(Pi) = Pi 

Cartan's form 0 = pidq i - H .  dt implies 

aS d 4*0 = 4*Pi A 4*dqi - 4*HA 4*dt = ~ qi - 4*HA dt 

= d S - ~ T d t - H o 4 d t = d S -  -~7+H qi,~-qTqi,t dt 

4"6 = d S  ~ 4*dO = 4"¢o = 0 

i.e. (4,  N) is an integral manifotd of  w. 

/ TM x R £e > T*M x R \ 

M x  R J ¢  ~ M x R  ,d > 

F i g u r e  2. 

The converse problem amounts to showing the relationships 

as as 
pi(q i, t) = _aq--7 and a t  + H o 4 = 0 

to hold. In fact 

4*dO =d4*O=da=O, Ha(UxI)  = O ~ 3 S : a = d S  

(22) 

as as  
4*0 = dS =-~qidqi +-~ dt = ~ pidqi - H o 4 dt 

Discussion. In our quest for an integral submanifold map N C T*M x g~, 
i.e. 4 : N ~ T*M x R of the form w = dpi k dq i - dH A dt we find that 

(a) N is the submanifold defined by S = constant and that 
(b) the physical component of  the Caftan field (0, ca) is determined by the 

cohomology group H 1. According to our introductory remark 2 this is 
just another way of  relating the Cartan-Euler field to the differential 
geometric structure of  P, i.e. 

HI(U ×/3 = 0 1 
~ i n j e c t i o n  =~" ~k*O = dS (23) / 4 :dr ~ T * M x R  
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3. Aharanow-Bohm Fields 

Aharanow-Bohm fields (hereafter referred to as AB fields) which are related 
to the AB effect (v. Westenholz, 1973; Aharanow& Bohm, 1959), display 
significant topological features and are therefore well-suited to the aim of 
treating interacting fields of  the type (1) in a unified way (cf. Section 6). 
The topological character underlying the AB effect is due to the following 
facts. 

(1) In the idealised AB effect (cL adjacent Fig. 3), the path dependence of 
the wave functions, which are solutions to Schr6dinger's equation in the 
presence of a magnetic field, is given by 

s 
path /  a 1 

(~°Lz denote the wave functions for the upper and lower beams, respectively, 
in the absence of a magnetic field in the solenoid). Interference patterns are 
created which depend on the integral ~;A. d~ = fc~ e l  around the closed circuit 
Cl E CI(R 2 - Dr) (space of 1-cycles over R 2 - Dr, the plane minus a disk Dr; 
the z-direction is dropped along the axis of the solenoid), when the beams are 
recombined at P. ca may be written formally as a linear combination 
cl = ?,101 + k202, hi E g~. 

incoming 

electron beam 
P a t h ~ ~  = 0 

Figure  3. 

(2) On the multiply connected physical space • 2 _ Dr of the AB effect 
the Hamiltonian is not essentially self-adjoint and therefore does not serve to 
define the dynamics. Therefore, the mathematical model of the corresponding 
configuration space is necessarily topologically different from R 2 - Dr. 

These aspects regarding the AB effect are well-suited to dealing with path- 
dependent field quantities, also in quantised theories. Mandelstam (1952) has 
shown that, within such a scheme, Quantum Electrodynamics can be formu- 
lated without unphysical states and indefinite metric. 

From physical arguments, AB fields are introduced as fields of the type (1) 
within a topological model which consists of (v. Westenholz, 1973): 

(1) a configuration space M which corresponds to a dynamical AB 
system; 

(2) an AB field and its dual field, given by 

(II) w 2 = Eidx i A dx ° + *Hijdx i ^ dxJ (25) 

and 

• ~2 =Hidxi^  dx o + .Eiidxi  ^ dM 
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(3) 
and 
the simply connected cotangent bundle T*M over M (which accounts 
for the quantum mechanical properties of AB fields) and the 
canonical structure on T*M. 

The AB field (25) is characterised as follows: 

Definition 4. An AB field is a pairing 

(w 1, Cl) (27) 

where w 1 = ~uAu dx u, x ° = const. ~u @ (0, 1,2, 3}, cl E CI(R 2 - Dr), 
such that 

w2= ~FuvdxUdxv{=O i f * H i / d x i A d x i E F 2 ( R 2 - D r )  

0 if supp (*Hii dx i dx 1) C D r 

x ° = const. 

w 2 = dco 1 (29) 

Remark 6. The dual AB field will be specified in Section 6 only. 
As regards the canonical structure on the cotangent bundle, it is given in 

terms of the diffeomorphism 
e 

~o : T*M ~ T*M : p -+ p +- -A  (30) 
C 

The corresponding canonical system accounts for a canonical formulation of 
the dynamics of  charged particles in terms of the symptectic structure 

(28) 

e 
(T*M, dO'), where 0 = p .  dq, p = p  + --A (31) 

C 

AB fields are of particular interest, since, within framework I of Section 1, 
they can be introduced to explain the virtual quanta of electromagnetic inter- 
actions (cf. Section 6). Moreover, AB fields provide, within framework II, a 
consistent model for the AB effect. This issue will be summarised only (cf. v. 
Westenhotz, 1973). AB fields enjoy the following properties: 

Property 1. Let HI(R 2 - D r )  and HI(R 2 - D r )  denote the first homology 
and cohomology groups of R 2 - D r  respectively. Then, by virtue of de Rham's 
first theorem, there exists a non-degenerate bflinear mapping 

/3 : HI(• 2 -  Dr) x H I ( ~  2 - Dr) ~ R1 

(601 ,Cl)"-> J Ca) = - ~  = AO ( 3 2 )  
¢1 

which assigns the phase shift AO to the AB field (w 1, cl). 
i 

Property 2. The gauge transformation of AB fields, A# = A u + a~,O(x) is 
given in terms of 

c o l , ~ I ' @ { ~ } E H I ( R 2 1 D r ) ~ ' = w + d O  w i t h d c o = d ~ ' = O  (33) 
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such that 

fco'= I ~ +  I d O ~  l w  '= f °) (34) 
C C c C 

holds. The gauge transformation property leads automatically to cohomology, 
which is clearly not the case for any Maxwell field. Therefore, formula (33) is 
just as good a definition of an AB field as Definition 4. 

Property 3. AB fields are 'quantised' fields by virtue of 

( D I = L (  d---~ atP)=dSeFI(T*M) where ~ =  ~0 ei(~/~) (35) 
2 i \  if" ~ ~ . 

g~ = t)o e-i(s/~) 
This property characterises the AB effect as a quantum effect on a simply 
connected cotangent bundle T*M. 

Property 4. On T*M the following holds (units h = c = 1): 

(o 1 = Axdx k = d,~ (36) 

We have thus proven the following 

Proposition 4 (v. Westenholz, 1973). The AB effect may be described 
in terms of the following topological conditions: There exist fields of 
the type (1) which satisfy the properties: 

f (1) HI(N ' )xHI(N ' ) - rR  :(~o*,ca)-+ co 1 = ~ -  N ' = N 2 - D r  

01 

( 2 )  (..o 1, ¢o 1' E {~} EHI(N ') ~ co g = co 1 + dO dw = d<.o' = 0 

(3) w 1 = --Akdqk = dS 
c 

(4) dS = ~. (d,t,l,t, - d~/~)  

These fields describe the AB effect as quantum effect by virtue of the 
following statements: 

(5) The functions which belong to the quantisation condition (4) are 
of the form 

and the Bohr-Sommerfeldrules are associated with the energy 
level constraint surfaces 

dS(H(~EM)) C ~EM (37) 

such that 
(6) the condition 

holds. 

~ dS = j dS = nh 
~o. c c 
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Discussion. On T*M the Hamiltonian wilt be essentially self-adjoint. The 
foregoing study exhibits the existence of physical principles underlying the 
necessity for making the field variables of a gauge-independent theory path- 
dependent (Mardelstam, 1962): 

x 

~ex,(-ieS ~) 
C1 

These quantities do not depend on the gauge selected for A~, 
i.e. the transformations 

--," ~o e ieo(x), ~ .--> tp. e-ieO(x) 

00 
A . - ~ A . +  - -  

3': [0, 1 ] -+M 4 is differentiable 

(38) 

(39) 

leave the matter field variables (38) unaltered, since 

C I C 1 

= ~o'(x) e x p ( - i e  f ~ol - ieO(x)) 
C 1 

Since 
X 

dO = O(x) 

'7 
~¢x ~ ~,~, 0x, ( / e  S ~')e~P ~ /e~,~ 

Cl 

CI 

As far as the electromagnetic field variables are concerned, the appropriate 
gauge-invariant quantities are the electromagnetic field strengths F.v = a.Av - 
Ovet.. Derivatives of ~)(x, 3') correspond to the 'gauge invariant derivatives' of 
~(x) 

a~(x,  7 )=[ (~- -~ - - - i eAu)~x) ]exp( - i e  f ¢ o O  (40) 
~XPt Cl 

where 

[Ot~, avl(~( x, 7) = -ieFtw(x)¢(x, 7) cl ~ CI(M) (41) 
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To summarise: A description of charged particles interacting with the electro- 
magnetic field within the AB-Mandelstam framework enjoys the property that 

path dependence of the field variables amounts, by virtue of (41), to 
saying that in the presence of an electromagnetic field the space appears 
to charged particles as curved. 

4. Yang-Mills Fields 

A rigorous description of interacting fields can be obtained by means of  a 
formal correspondence principle between the Yang-MiUs theory (hereafter 
referred to as YM) and some principal fibre bundle P(M, G) over space-time M 
with structure group G. A motivation for such an approach where interactions 
manifest themselves through curvature properties of a bundle is given mainly 
by Einstein's geometrical description, which uses the curvature of the 'external 
space' M 4 to describe relativity theory and partly by Mandelstam's approach 
to field theory as described in our Section 3. 

The conventional phenomenological approach to YM fields is the following. 
The elementary particle fields, which occur in multiplets, are subject to a trans- 
formation law 

~ ( x )  = U ~ ( x )  (42) 

in the internal space. Yang and Mills considered multiplet fields ~(xU), x ~ EM, 
subject to gauge transformations U(x ~) belonging to some gauge group G. 
Consequently, the extended gauge transformation law is given by 

@'a(x) = Ua3(x)@~(x) (42') 

If some Lagrangian is invariant under equation (42), the requirement of in- 
variance under the wider transformations (42') necessitates the introduction 
of a new field Bu, called YM-potential, subject to the gauge transformations of 
the second kind. This field must be coupled to the matter field ~ only 
through the replacement Ou~c, "+ (au - ieBu)tp~(x). 

This issue has been formulated in a more general fashion by Utiyama (1956), 
whose approach is the following: Consider a system of fields tp(i)(x) which is 
invariant under some n-dimensional transformation group G. Suppose G to be 
replaced by a wider group G', derived by replacing the n parameters by a set 
of arbitrary functions o fx  EM. Then the following problem arises: 

(1) What kind of  fidd, A(x), is introduced on account of the invariance? 
(2) How is the new field transformed under G'? 
(3) What form does the interaction between the field A and the original 

field ~ take, i.e. how can one determine the new Lagrangian LI(~, A) 
from the original one, i.e. from L(q0? 

(4) What kind of field equation for A(x) are allowable? 

More specifically: Consider a Dirac spinor field which interacts with an external 
electromagnetic field. The total Lagrangian takes the form 

L = Lo(O) + Lo(Av.) + L 1(~, Au) (43) 
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where Lo(Au) is invariant under the gauge transformation 

Ala -+ At, + ataO (44) 

and Lo(~k) is invariant under the transformations 

t) ~ eieO~ (45) 

If we now require that L be invariant under equation (44) and the gauge trans- 
formations ~ -~eieO(x)~ simultaneously, L 1(~, A,) is determined uniquely 
provided we replace in Lo(q*) the differential operator a ,  by the gauge invariant 
derivative 

at, -+ av - ieA u (cf. equation (40), Section 3) (46) 

The interaction term is found to be 

L 1 = e. ~'@tpA# = ]'~*. A ,  (47) 

describing the influence on the Dirac field tp(x) exerted by the electromagnetic 
field A,(x) .  The coupled field equations are: 

and 

where avj~* = 0. 

[",/~(a~ - ieA**)] ~ = m ~k (48) 

r-lAg = F UvV= 4rrjU (49) 

Summary. The form of the interaction has been determined by the 
requirement of  gauge invafiance of  the second kind, or, more generally, 
the form of the interaction between some fields can be determined by 
postulating invafiance under a certain group. 

Remark 7. The Lagrangian (47) expresses the principle of minimal electro- 
magnetic interaction, which states that all charged particles have only current 
type interactions with the electromagnetic field A u. 

The aim of our Section 4 is to provide a rigorous description of Utiyama's 
approach. 

Let P(M, G) be a principal bundle over space-time M = M 4 with structure 
group G and connection form &l. The group G is regarded as the gauge group 
(YM group). For any non-vanishing cross-section s : M-+P we introduce the 
quantities 

co I = A = s*~ 1E FI(M) (50) 
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(s* denotes the 'pull-back' mapping to s) 

co 2 = B = s*f~ 2 ~ F2(M) 

where 

a 2 = dco + ½ [co, ~o1 

denotes the curvature form of co. 
Formulae (50) and 451) represent the YM-potential and YM field respec- 

tively. In local coordinates (x ~*) we have 
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(51) 

(52) 

and 

~o 1 = Y A . d x .  (50 ' )  

w2 = E B**vdx" dx v (51') 

where 

B ~ - aA# a 
# v -  ~X v 

aAf 
~x ~ ceAa(AgnA~ - AvPA~ °) (53) 

t oL denote the components of the YM field (51 ) (coo are the structure constants 
of the holonomy algebra (cf. Proposition 5 below). 

To establish a. formal connection between the YM description (in the sense 
of Utiyama's programme) and the fibre bundle approach, we introduce a topo- 
logical YM field, which is of the type (1), as follows: 

((,31, ¢1)(,.~1 = ~ . .A#dx  I~, c 1 E f x o  = {3,13,(0)= 3'(1) = Xo} 

(set of loops with base point Xo EM)  (54) 

q-he principle of minimal interaction can now be expressed as follows: Consider 
the fibre bundle E(M, F, G, P) = E associated with P with standard fibre F. On 
the product manifold P x F, we let G act differentiably on the right by 
(p, f ) g  = (lag, g - i f )  and let the quotient space o fP  x F by this group action be 

E = (? × F)/G (55)  

Furthermore, let X = (3/Ox ~) E t ( M )  be a C%vector field on M and q/E I-(E) 
a cross-section of E. Then the covariant derivative V s $  of ~, in the direction 
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of X can be written as (v. Westenholz, 1972; Trautman, 1968) 

( 3  _ ieAta)t)=Vtatk (56) Vx~ = Va/axta. ~ = ax-- ~ 

Vta~a = a ta~a-  oo~t~  (56') 

(cf. v. Westenholz, 1972; Trautman, 1968; Hiley & Stuart, 1971) 

This is the familiar rule of 'minimal interaction', i.e. relationship (56) may be 
used as a basis for introducing interactions between charged particles and fields 
of the electromagnetic type (i.e. also YM-potentials). 

Remark 8. The gauge covariant derivative of a matter field (56') may be 
used to define the quantities 

= ctx . = ( 5 7 )  

which constitute the difference between the fidd values of a multiplet that has 
been displaced in a parallel fashion from xt* to x u + dxta. That is, the gauge 
potential oo 1 provides a gauge invariant definition of equivalent, i.e. parallel, 
multiplets at neighbouring events in terms of the relationship 

  (xta + axta)  - = ( 5 8 )  

Remark 9. Formula (56) is related to the horizontal lift of the vector field 
X = (a/axta) E ~(M 4) to P(M 4, G) in the following way: Consider the canonical 
basis (e~, ev a) = (e~) of the tangent space Tp(p(M4)) t op  EP. Clearly 
drreta = eta ~ (a/axta), {ei} is the canonical basis of  Tx(M) and drrev x = 0, where 
the projection rt is given in local coordinates by (xta, ata x) -+ xta. A basis of the 
horizontal space lip is then given in terms of 

axt a 

and this is the horizontal lift of a/axta, since 

a 

- - - -  r~xaxX aqxta (59) 

a 
a  ?ta -- - -- eta - x )  = eta - 3x ~ 

It can be shown (Hiley & Stuart, 1971) that (59) takes the form 

~ a 
Xu = ~x~ - ieA taPEP (60) 

where {Ep} is a basis of the Lie algebra g of G. Therefore, roughly speaking, it 
turns out that covariant differentiation corresponds to Lie differentiation as 
displayed by Proposition 1.3, p. 116, of Kobayashi & Nomizu (1963). 

Remark 10. Within the correspondence principle between the YM theory 
and the fibre bundle approach, it turns out that the gauge invariant derivative 
(formulae (40) and (46)) is nothing more than the generalised covariant deriva- 
tive in the bundle E. 
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As regards the matter field which interacts by means of (56) with the electro- 
magnetic field, it is defined by the transformation law 

$'(x) = U(x)$(x) (61) 

where U(x) = o(g "-i) for some g E G, that is, U(x) is an element of p(G), the 
representation of G, on the standard fibre F; U:M-+ p(G). 

Example 1. Let M be space-time, G = SO(2), i.e. P = P(M, SO(2)) and let 
p: SO(2) ~ U(1) = {e ic', e~ mod 2rr}, i.e. SO(2) acts on the standard fibre Cof  
the bundle E = P x C/S0(2) associated with P. The gauge transformations of the 
first kind are given by U: M-+ U(1), U(x) = e ie°(x). They act in the set of 
cross-sections of E by 

~' (X) = e-ieO(x)~(X) (61') 

The field ~ can therefore be interpreted as a matter field which describes 
charged particles. Since the gauge group is a one-parameter Abelian group, 
e~o - 0 and relationship (53) becomes (53'), Buy = Fur = (3Au/ax ~) - (3Av/3xU), 
which is just the electromagnetic field tensor. 

Remark 11. By virtue of this example, etectrodynamics can be regarded as 
the theory of  an infinitesimal connection in a principal fibre bundle with 
structure group SO(2) as pointed out by Trautman (1968). 

Example 2. Let M be space-time and G = SU(3). The fundamental represen- 
tations of SU(3) are D3(1, 0) and D3(0, 1) and 

D3(1, 0) ® D3(0, 1) =D8(1, 1) @ DI(0, 0), 

where Ds(I, 1) is the eight-dimensional adjoint representation of SU(3). For 
the corresponding spinor field ~ :M-~ C 4, which classifies, say baryons, we have: 

~/~(x) = ~ U~(x)O~(x), U~ EAd(SU(3)) ~-D8(1, 1) (61") 
~3=1 

Remark 12. The Ambrose-Singer Theorem (Ambrose & Singer, 1953) proves 
that the curvature form of the bundle connection spans the Lie algebra of the 
restricted holonomy group ¢Xo, i.e. 

U~ = 6 ~  + f ~ v  dx ~ dx v (62) 

where ( ~ 3 )  denotes the matrix of the curvature form g22 and 

g2 = ~ ~2~Et~U; {E~: cq fl = 1 . . .  m) (63) 
ot, B 

constitutes a basis of ft. 
In the case of Example 2, where 

G = SU(3) (64) 

such a basis is given by X~, which are the eight traceless Hermitean Gell-Mann 
matrices. 
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Proposition 5 (v. Westenholz, 1972). Let P(M 4, G) be the principal 
bundle over space-time with structure group G, 655 its connection l- 
form and ~22 the curvature form of o31. 

and 

Then the following holds: (1) The fields 

(Ca) 1, e 1), ¢01 = A = ~ .  A u dxU E FI(M4), 

ca ~ C~ o = {'tiT(l) = ~/(0) = Xo} (66) 

(co 2, c2), co 2 = B = ~ Buy dxU dx v (67) 

can be regarded as being derived from the structure P by virtue of 
s*~ 1 = co s and s*~ 2 = s*~ 2 = co 2, s :M-+ P(M 4) is a cross-section. 
(2) The YM field (66) interacts with a matter field of charged particles, 

~ '~(x") = v ~ ( x . ) ~  o(x.) (42) 

by virtue of 

7 u~k =( b@ - ieAu ) ~ (56) 

which is the principle of minimal coupling. (3) The topological field 
components CliE C1 (M) of the YM field (66) determine completely 
the interaction symmetry. 

Proof. With each loop 3'i = Ci 1E Cxo is associated the parallel displacement 

3'/~ r~/i: lr-l(x0) ~ rr-l(xo), r~i(Pg) = r~l(p)gYg E G, p E P  (68) 

These automorphisms {r~, i} of the fibre Fxo = n-l(xo) can be shown to be a 
group, the holonomy group of the connection (v. Westenholz, 1972). The 
unique horizontal lift of the differentiable path 3, : [0, 1 ] -+ M 4 beginning at 
p E rr-l(Xo) is the integral curve of Xu, i.e. we have 

-~ ~(u(P) = ~ - ieA~Eo (of. (67)) (69) 

Therefore, the gauge-invariant derivative (56) is determined by the field com- 
ponents c a * E C~°(M4)of (66). These field components obviously also determine 
the transformations of ~Xo- ~xo in turn characterises the minimal interaction 
through (60) and (62). 

Remark 13; Formulae (68) and (69) display how the YM fields, (66) and 
(67), are associated with the geometrical structure ofP(M, G), i.e. the inter- 
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action with the matter field (42) is mediated through the topological com- 
ponents cl i. On the other hand, if the matter field is paralMy transferred 
around some loop 3' E Cxo (cf. Remark 8) then upon return to Xo it will, in 
general, differ from its original value due to the non-integrability of the bundle 
connection, i.e. by virtue of 

that is 

(70) 

[Vv, V.] = [ ~ - - ~  Ox" C~o(A.aAva -AvOAu °)]Ea =B~vE~ (71) 

This operation of parallel displacement around 7 induces the linear transforma- 
tion 

(42) 

This transformation law defines a quark. Since (42) is induced by the 'homo- 
logous' YM field component (66) it is quite natural to interpret a quark as an 
elementary loop ca i @ C1 o of a YM field. In particular, quarks may be viewed as 
quantised elementary loops (Jehle, 1971), but only when interlinked with 
other loops (cf. Section 6). 

Remark 14. If the restricted holonomy group ~Xo is given, one can always 
determine the topological field component ci 1 = 7i of a YM field (601, ci 1) 
such that % ~ r~i E ~Xo" 

Remark 15. The local symmetry group ~bXo is an internal symmetry. A 
necessary condition for the minimal coupling to be 'switched off is 

~Xo = I (72) 

i.e. the local symmetry is trivial (refer to Section 6). 
In order to achieve this rigorous approach to Utiyama's programme it re- 

mains to find the field equations. These are 

d*B = 4rrw 3 (73) 

the YM equations, where *B is the field which derives from the dual curvature 
form *~2 and 

~3 =]odxldx2dx3 + . . .  +]'3dxodxldx2 (74) 

denotes the 3-form which stands for the conserved current 

= 0 ( 7 s )  
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In particular, if G = SO(2), equation (73) reduces to Maxwell's equations 

d*oa2 = 4n], j~ = (p, 1"0,  *Fuv=~T.%vooFoo. (76) 

In order to reformulate, within this framework, both coupled field equations 
08)-(49) one must have recourse to an appropriate variational principle. This 
will be published elsewhere. 

5. A Differential Topological Approach to Noether's Theorem: 
The Topological Gelt-Mann Current Field 

Noether's theorem, connecting one-parameter groups of symmetries of a 
variational problem and conserved currents, is fundamental in field theory. 
The adequate mathematical approach to the study of symmetry properties of 
a system is given in terms of groups of automorphisms, i.e. of transformations 
which carry over the system into itself. If a system is invariant under a certain 
group of transformations then from this symmetry property there follows the 
conservation of certain dynamical observables of this system. 

In the phenomenological Lagrangian formulation such conservation laws 
are obtained as a consequence of the transformation properties which some 
Lagrangian must undergo, namely that it transforms like a scalar under some 
transformation group: 

L(~(x), ~,u(x))= L(~(x), ~,u(x)) (77) 

As a simple example suppose the transformations 

Ca -+ e ietpo ~ (78) 

and 

~a -" e-i°q/ez (79) 

to leave unchanged the Lagrangian L = L(O, au~k ). It follows that 

/"(x) = % - ( 8 0 )  

is the conserved electric charge current density, i.e. 

azfu = 0 (81) 

Equation (80) then defines a constant of motion, which is given to be the total 
charge 

Q = f j°(x) d3x (82) 

x°=const 

in agreement with the one-dimensional Abelian Lie group (78), i.e. (79), and 
thus satisfying Noether's theorem. 
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Our subsequent approach to Noether 's  theorem is aimed at a differential 
topological version of  the basic statements relating properties of  invafiance to 
conservation laws. 

Remark 16. Our differential topological approach to Noether 's  theorem for 
systems of  infinite degrees of  freedom is modelled after a modified version of  
Proposition 2, i.e. Noether 's theorem for finite degree systems: 

Proposition 6 (v. Westenholz, 1973). Every infinitesimal symmetry o f  
some Lagrange form generates on every state a conserved current. 

Proof. Let X E ~(P)  be an infinitesimal symmetry of  a Lagrangian n-form 
co, i.e. X(co) = 0. Set 

= X J co (83) 

for any state c (Definition 1) 

do~ = d ( X  _1 co) = X_ I  dco - X(CO) = X _l dco 

~do~tc = X_J dcolc = 0 (84) 

Formula (84) states that (83) may be viewed as a conserved current. Proposition 
6 provides an important  representation for global observables in terms of  the 
functional 

<e, X_I co) = ~ X J co = f(c, X)  (85) 
C 

Questions related to invariance properties of  Lagrangians which characterise 
systems with infinite degrees of  freedom can be associated with jet bundles 
(Hermann, 1970). We recall the construction of  the bundle JI (E)  of  1-jets 
associated with the fibred manifold n : E -~ M. Consider 

M x  F(E)= ( ( x , s ) : x E U C M ,  s E P ( E ) ,  s: U-+E} 

and the equivalence relation ,~, defined by 

(x, s) = (x',  s ')  mod ~ ~* Dxs = Dxs' (D stands for the derivative) 

Let ] : M x F(E) -+ JI(E) = M x P(E) /~  be the canonical map o f M  x P(E) on 
the quotient M x I?(E) by ~ .  The set J I (E)  admits a natural structure of  differ- 
entiable manifold, such that the map r : J I (E)  -+E, r(j(x, s)) = s(x) is differenti- 
able and zr 1= n o r : JI(E) ~ M is a differentiable bundle. This is summarised in 
terms of the following diagram: 

j1 (E(M4)) r }. E(M4 ) 
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Assume now t h a t M  4 is orientable and let dp = dx ° ^ . . .  A dx 3 be a nowhere 
zero 4-form on M 4 and let 

L : JI(E(M4)) -* 

(x u, 0~, 3 u ~  -+L(xU, tp~, Ou~c0 (86) 

be a real-valued function, the Lagrangian, defined on JI(E), where a coordinisa- 
tion is supposed to be given in terms of  (xU, ~ ,  auOa). A first approach to 
Noether's theorem, due to Hermann (1970), can be outlined as follows. Con- 
sider the Lagrange 4-form 

~o 4 = LTr 1. dp E F4(JI(E)) (87) 

Define an infinitesimal symmetry o f  L to be a vector field X E ~(E(M4)) which 
has a first-order prolongation X 1 E ~(JX(E)) such that 

XI(L~ "1. dp) = 0 (88) 

holds. Then Noether's theorem states: 

Proposition 7. There exists a vector field Y EJC (M 4) such that 

d(Y_J dp) = jl(s)*Xl(~4) = 0 (89) 

provided X 1 constitutes a symmetry field o fL .  jl(s) : M 4-+ J~(E) is a l- 
jet o f  the extremal s. 

A proof  o f  this proposition can be found in Hermann (1970). 
Remark  17. A vector field on j I (E)  is a first-order prolongation of  some 

XE3~(E) ,  i f ~ ( E )  -~ 3~ (JI(E)) : X - ~ X  1 is a Lie algebra homomorphism. 
By virtue o f  relationship (89), Y 1 dp can be interpreted as a conserved 

current, i.e. 

Y_J dp = co3 = jo d x l d x 2  dx3 + . . . + j3 dx°  dx l  dx2 (90) 

which is just (74). By virtue of  (75), j  u = (3L/OOo~,u)Tc~(x), Ouju = 0, it turns 
out that this divergence-free 4-current, which corresponds to (90), entails the 
condition 

d¢o 3 = 0 (91) 

to hold. 
An alternate approach to Noether's theorem isgiven as follows: Let 

s : M 4 -~ E be a section of  the bundle E(M 4) and ~0t : E -* E be a one-parameter 
family of  automorphisms of  E such that 

where ~o t : M 4 -+M 4 is a family of  diffeomorphisms of  M 4, whose infinitesimal 
generator is XM- Suppose that the families st and ~t preserve the action 

I~t(g ) (st) = I ~ s )  (93) 
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where  I u O  ) = fu L( j  1 ($)) dp. U C M 4 is a c o m p a c t  set,  

~o~(L (]1 (st) dp) = L (/I (s)) dp (94) 

where st = ~t o s o ~t  1. 
This leads to the following (cf. v. Westenholz, 1973; Goldschmidt & 

Sternberg, 1973): 

Proposition 8 (Noether). Let s be an extremal and suppose that u t is a 

one-parameter family of sections of JI(E) with u o = u =/l(s). ~t is a 
one-parameter family of  diffeomorphisms of the fibred manifold E(M 4) 
which preserves the action (93), i.e. which satisfies (94). Then the 3- 
form 

L(j I (S))XM -3 dp + u*(X _J O) (95) 

on M 4 is closed, where XM = (&ot/dt)lt=o and X = (dut/dt)lt= o. 

Proof. Set u t = J 1(sO, then by Lemma 1, below, / l(st)*O = L (J1 (st)) dp = u*O 
by (94), ¢*u*O = u*O, where u = ]l(s), therefore 

d 
-~ (~°~u~O )[t= o = d~*(XM -t u*O ) + ~o*(XM _l d(u*O ) + ~0" [du*(X _J O) 

+ u*(X _1 dO)] 

= ~o*[d(X M I u*O) + ( X  M [ u'dO) + du*(X_J O)+ u*(X_JdO)] 
= 0  

u'dO = 0, since u'dO E FS(M4); u * ( X I  dO) = 0 since s :M 4 ->E is an extremal 
by assumption. 

d(XM _J u*O) + du*(X / 0) = 0 and u*O = L(]l(S)) dp (96) 

Lemma 1. There exists a unique differential form 0 of degree 4 on 
Jt(E) such that 

/i(s)*o = Lq i ( s ) )ap  (97) 
for all sections s of E(M4), where x ~j t (s)(x)  is a differentiable section 
of JI(E). 

For proof refer to Goldschmidt & Sternberg (1973). 
Remark 19. The differential form 0 of Lemma 1 generalises, within the 

framework of jet bundles, the Caftan form (6), 0 = pidq i - H .  dt, on the co- 
tangent bundle (cf. Section 2). Moreover, the relation between this generalised 
Cartan form and the functional 

s-+I(s) = f u*O (98) 
u 

is just a generalisation of the functional (7) of Section 2. 
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Discussion. The Jet-bundle formalism also fits the principle of minimal 
interaction (Section 4). Therefore, Noether's theorem can be, in principle, re- 
stated for gauge invariant theories, i.e. the theory of YM fields, on account of 
some modifications. In fact, suppose E(M 4) be the associated vector bundle of 
some principal bundle P(M 4, G). Let L : J~(E) -~ g~ be a Lagrangian on Jl(E). 
The principle of minimal interaction leads to the following bundle isomorphism 

0t : J l(g) -~ j l (g )  (99) 
such that 

a*(L)(]l(s)(x))=L(a(/l(s)(x)); ]I(s ,x)EJI(E) (100) 

where cz* : FP(JI(E)) ~ FP(JI(E)) denotes the dual map of the smooth mapping 
~. In terms of this set-up it can be shown (Hermann, 1970) that the Euler- 
Lagrange operator associated with the Lagrangian a*(L) differs from the usual 
Euler-Lagrange operator by the term 3~ - ieA~. That is, if one takes a Lagran- 
gian of the form L =/3~u(¢)¢ ~ ,  then 

3v(L~) - L~, = ax--- ~ [/3ca~(O)] -/3t~v,a(O)au0~(x) (101) 

becomes 

Ox~ [ ~ ( 0 ( x ) ) ]  - ;3av,~(O(x))](a.  - ie&,)O~(x) (102)  

We now describe the construction of the conserved observables which are 
associated with Noether's theorem. Constants of motion, such as the total 
charge (formula (82)), arise within a differential topological framework in the 
following way: Let c3 C M 4, c3 @ C3(M 4) be a three-dimensional submanifold 
ofM ~. Then, according to de Rham's theorem, there is a non-degenerate bflinear 
mapping 

: H3(M) x H3(M) ~ N (103) 

@03, c,)-~ f(s, c 3, Y) = f 6°3 = ~ Y _t dp (104) 
C 3 03 

o o 4 

Definition 5. The pairing (103), (6o3, c3), 6o3 EF3(M4), c3EC3( M ), is called 
a topological Getl-Mann current field. The quantity (104), f= f ( s ,  c3, Y), 
denotes an observable which is said to be associated with the Gell-Mann 
field (6o3, e3). 

Remark 20. The cohomological component of the Gell-Mann field (103) is 
the conserved current 6o 3 given by formulae (90) and (92). 

Remark 21. The Gell-Mann field (103) is a topological field of the type (1). 

t~oposition 9. Observables which are associated with Gell-Mann current 
fields are constants of  motion. 
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Proof. Let c3 and e~ be submanifolds o fM 4 which cobound, i.e., are the 
boundaries of the four-dimensional region c4, then 

f i 
" f(s ,  e3, Y) = f(s,  c;, Y) (105) 

Remark 22. The observable (105) is the field theoretic counterpart to the 
functional (85) of finite degree of freedom systems. 

Remark 23. The conservation condition (89) cl(Y _I dp) = 0 of Proposition 
7 ensures that an observable f of the type (104) does not depend on the choice 
of the 'Cauchy data' submanifold e3 C M 4. 

In particular, choose c3 as the submanifold Xo = const., then 

(co, c3) -+ Q = f Wo(t, x )dx  t A dx 2 A dx 3 (t06) 

which is the charge generated by the current co 3 (cf. (82)). Assignment (106) 
is to be regarded as a generalised charge. Now, if the Gell-Mann field corre- 
sponds to the YM group SU(3) then this generalised charge is given by 

(co 3, ca) ~ Q = e(/3 + ½Y) (107) 

(Y denotes the hyper-charge and I3 the three-component of the isospin). 
The Gell-Mann current fields provide a structural interpretation to the 

currents that arise in the YM theory. Generalised currents that generate the 
generalised charge (107) are defined by the YM equation (73), d*B = 4rrco 3, 
which exhibits how the cohomologous Gell-Mann field component is related 
to the dual YM field *B. Within such a structural analysis of currents it turns 
out that the currents defined by (73) span the Lie algebra of the holonomy 
group ~Xo, i.e. this ]de algebra consists of all linear combinations of the quanti- 
ties ~2~o~u, V x~2~v, VrVxf2~o4a~ . . . .  Since forces or interactions are supposed 
to manifest themselves through the curvature properties of some principal 
bundle, our approach to (strong) interactions is consistent with the following 
conventional interpretation, which says: 

Fundamental objects for strong interaction physics are not the fields 
O(x) but the currentsj ~ which mediate the interactions by virtue of 
the principle of minimal interaction and 

(a) the Gell-Mann current field (w 3, c3) in conjunction with 
(b) the Yang-Mills equation d*B = 4~rco 3. 

The underlying geometrical structure is a principal bundle of the type 
P(M, SU(n)). 

Remark 24. The charge assignment ( t07) can be understood in terms of the 
commutators ({E~:  a,/3 = I . . .  8} is a basis of g(SU(3)) 

[ES* , E~ x] = 8~E# x - 6uXEf~ which imply E11 = 13 + ½ Y 

- h  + ½Y 
E33 = --Y etc. 
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6. Non-Local Field Theoretic Description o f  Interactions 

The purpose of this section is to study, within the framework of the preced- 
ing five sections, in more detail how interactions which correspond to an inter- 
action Lagrangian Li(¢,  A u) = ejUA u and, more particularly, effects of such 
interactions, such as 'dressed' and 'bare' charge, virtual quanta (photons) etc., 
must be described. 

What is now the exact meaning of interaction if the fields involved are topo- 
logical fields of the type (1)? As such fields are related to topology, it seems 
quite natural to define interaction in terms of the topological linking number 
of the topological components of the interacting fields. More precisely, let the 
basic set-up be given in terms of fields (6ol 1, c11), (6o21, Cl 2) . . . .  , (COn 1, cln). To 
start with, we confine ourselves, however, to the case of two fields, say the 
electromagnetic field (ml 1, c11), 6Ol t = ~gA#. dx ~, which interacts with the 
matter field (6o2 I, cl 2) whose topological component cl 2 E CI(M) represents a 
basic unit of particle physics (Remark 13). Then the topological interaction 
scheme consists of 

(Ia) A topological interaction description in terms of the linking num- 
ber l(cl 1, cl 2) of the quantised loops cl I and cl 2. 

(Ib) A 'total' field which accounts for the principle of minimal coupling 
and the corresponding equations of motion of the fields. 

(II) The property of non-locality. There is a formal correspondence 
principle between the non-local AB fields which account for the 
quantisation of  the loops c i i and the virtual quanta involved. 

This topological approach provides an estimate of the electromagnetic inter- 
action constant c~ = e2/hc. 

Remark 25. The principle of minimal interaction introduces a 'total' field 
in terms of the action integral 

I= f ]~.A#d4x = f (eAil+ ]2sVF~v~)dx u :  I col, ¢ol EFI(M 4) 

(Voros, 1972) 

Remark 26. Let (co21, C12) represent some matter field. According to 
IAchnerowicz (1964) one can always construct a spinor field ~0 = Sco21 which 

• * - t defines the corresponding interaction quark by ~c~ = Ua ~3 (cf. formula (61)). 
Remark 27. All local relativistic field theories with interactions are divergent; 

'renormalisabflity' then expresses the fact that when the observable quantities 
are re-expressed in terms of the 'renormatised' charge and mass, no divergences 
appear. In order to circumvent such ill-defined concepts, one might argue that 
a more correct field theoretic approach to interaction should be non-local in 
character. 

A description of interacting topological fields may now be given as follows. 
Let f :  S 1 -> R a be an imbedding such that f (S  1) = OMfor the compact oriented 
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/ \ / \ 

/ 1 \ 

\ / \ $2 " x , , ~  / 

g = g , S  1 

Figure 4 
2-manifold with boundary M = c2 (cf. Fig. 4) andS  1 = (z : l z l  = 1) .  Letg :  S 1 ~ R  3 
be a map such that whenever 

g(t) = p e M  (lOS) 

one has dg/dt ~ Tp. f and g are supposed to be C~-maps and g(S 1) n f (S  a) = ~. 
Now define the map Xf, g = - ×" S 1 x S 1 -~ S 2 C R 3 - {0} by 

g~s)  - f ( t  

×(s, t) = IIg(s) - f ( t ) I I  

= ~ and degx = l(f, g), that is, the degree of  the map X is by definition the 
linking number o f f  and g. Then the following hotds 

Proposition 10. Suppose f =  f , S  1 to be a steady current-carrying loop. 
Then the circulation around the loop g = g ,S  1 is the quantity 

l ( f ,g)= f i f . d ;  (109) 
g . S  1 

where 

dy  H = a (x )  = - -~  f [y _ ~1t3 
(110) 

Figure 5 

denotes the total magnetic field a t ~  E R 3 due to the current I = - e/r  
inf .  

where 

Proof. Since l(f, g) = degx and f X* = deg X f¢o fs~ ~ = 4rr. We have to 
show that 

l ( f ,g)=~-~ X*W = -  4--~. t lg (s )_ f ( t ) l l3ds .d t  (111) 

S ~ x S  ~ 

[ gl(s) -- f l ( t )  g2(s) -- f2(t) g3(s) -- f3(t) I 

A(s, t) = [ g'l(s)" g~(s) g~3(s) ! (112) 

[B(t) f;(t) f;(t) 
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that  is for i :# ] 4:-k: 

A(s, t) = - 2 ( -  1) i +l(gi(s) - -  f i ( t ) )  [ g ; ( s ) f k ( t )  - -  g'k(s)ff(t)] 
i 

It is reaCfly seen that the right-hand side o f (111)  equals (109), for 

Yi = gi(s); Xi = f/(t);  dY--A = g)(s); dxi = fi'(t) 
ds dt 

Now co' = ~=1  (-1)i+l~id~]d~k is the element of  volume o f S  2 and 
= ~'/11 ~ II 3 the elements of  volume o f R  3 - {0} 

~X .60 1 .~ (_ l~ .+ l~ i t a_~ds_~ d t )  [~tc +~t~dt 
lit(s, t ) l t 3 ~  \ Os A ~-~s ds ~ ) 

by virtue of  the definition of  ~(s, t) = g(s) - f(t) 

1 
~ X*°~-  [Ig(s ) -- f(t)[[3~ (-1)'+l(gi(s)- fi(t))[ ~-~t ~kas 

(113) 

where O~l/~t = )~'(t) and a~i/Ss = g~(s). 
Discussion of relationship (I09) .  Let f = c 11 and g = Cl z be the topological 

components  of  two interacting fields. By virtue of  Biot-Savart 's law the work 
done by H, i.e. the circulation of  H around g, accounts for the corresponding 
interaction intensity. Consequently if 

g,S 1 AM= qb ~ l(f, g) = 0 

there is no interaction. More generally if 

f(S 1) and g(S 1) 

(115) 

(116) 

can be separated by a hyperplane, again l(f,  g) = 0. Otherwise stated, if  ~ ,  g} 
and (fo, go} are two pairings of  paths that are homotopic  to each other, where 

/ 1 z = 0  and go ( x + 2 )  2 + y z - 1  0 fo  ( x - 2 )  2 + y 2 - 1 = 0  = 

then again l(f, g) = 0. Finally 

6o 1 = H i d x  i = 0 implies also l(f,  g) = 0 (117) 

A more precise version of  Proposition 10 can be obtained as follows: For the 
compact  oriented 2-manifold with boundary M = c 2 C R 3 and (x', y ' ,  z ' )  q~M, 
let 

a=I (x-x'ldy^dz+-(v----Y')---~-~^dz+(z-z')dx^dy (118) 

o,- y'V + 7) i 
M 

# v . '  . 

and suppose (x ,  y ,  z ) on the same side of  M as the vector Wp E ~p - Tp in 
such a way that wp, (vx) p, (vz) p is positively oriented in Rp 3 when (vl)p, (v2)p 
is positively oriented in Tp. Then we have the 

0 k@' 1 
~t ~s J 

x dsAdt (114) 
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Proposition 11. Let g : S 1 -> ~ 3  and suppose that whenever g(t) = p E M  
one has dg/dt ~ Tp. Let n + be the number of  intersections g(S l) N M 
where dg/dt points in the same direction as the vector wp and n -  the 
number o f  other intersections. Then 

,f 
n =n +-  n -= 4rr g*dg2 (119) 

S 1 

A proof  o f  this proposition can be found in Crowell & Fox (1963). 
Remark 28. It can be shown that formula (109) o f  Proposition 10 equals 

relationship (119), that is 

n = l (f, g), where aM = f , ( S  1) (120) 

The physical interpret_.ation o f  relationship (1 t9)  is the fotl_?wing. Consider 
Maxwell's__equation rot H = (41r/c)i. Since the  current density i is zero outside 
f , S  1, rot H = Opermits the expression of  H as the gradient of  a magnetic scalar 
potential, i.e. H = - g r a d  ~k. 

Relationship (118) represents the solid angle subtended by M at Y (Fig. 6). 

s2 

d£ \ ~  J /  

F i g u r e  6. 

According to electrodynamics: 

I . I 
H = - ~ -  grad ~2~col=Hidx  ' = - -~dg2  (12t )  

or, which amounts to the same 

H = H1 = 4r rax  = ¢'* = ~ y , ~ [ - 3  . . . .  ' 
S 1 

S 1 

of 

(122) 

Remark 29. The multi-valuedness of  the potential ~ is expressed in terms 

¢~1 - ¢J2 = ~I~l .d~=41rI=cons t .~nkIk=n+--n  - (123) 
c k 
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(for the unit currents lk), which means that the potential ~O is single-valued if 
and only i f f  and g are not interlinked, i.e. 

~ t -  ~2 = ~f f .c f f=  0 (124) 

The problem which arises now is, whether or not a gauge invariant theory, 
whose field variables are derived from the geometric structure of a principal 
toral bundle P(M 4, SO(2)), can account in a consistent way for concepts such as 
'bare charge' or 'bare mass', 'renormalised charge (mass)' etc. These issues will 
be studied in terms of the following 

Proposition 12. Let ~ = P(M 4, SO(2)) be a principal toral bundle whose 
connection is defined by the 1-form 601. Suppose 

Af: [0, 1] C R -+n-l(Xo) = Fxo C P  (125) 

be a loop (cf. Remark 30 below) along the circle S l = SO(2), then 

S2EH2(M4)(3mET/):  --~ 602=m=wa(Af) (126) 
S 2 

constitutes the charge enclosed in &f. wa(&f) is the winding number 
of Afabout  a and 

[co 2 = 2FuvdxU dxV ]EIff(M4,2~ ) (127) 

is the first characteristic cohomology class el(~) of P(M 4, S0(2)). 

Remark 30. The mapping (125) A f o f l i n t o  the fibre Fxo over x0 CM 4'is 
defined by 

Af(s) = f(s, 1) (128) 

where 

JrE C°°(12, P(M 4, SO(2)) (129) 

denotes the lift o f f  to P(M 4, S0(_2)), i.e. Jr: I x I ~ e ;  (s, t) ~ f ( s ,  t) is given in 
terms of the properties (129), zr(f(s, t)) = f(s, t) E M 4, and 

jr(s, 0)= Jr(0, t )= f(1, t )=Po  EP, lr(p0) =Xo (130) 

A constitutes the boundary homomorphism of the homotopy exact sequence 

-+ l-I2(p ) --~ II2(M 4) ~ I/I(SO(2)) -+ Iil(p ) + . . .  (131) 

Remark 3 1. An important feature of P(M 4, S0(2)) is that its first Chern 
class be independent of the choice of the connection 601. In fact, let w 1 and 
6o t' be two connections inP(M 4, S0(2), 0 EFI(M 4) be such that rr*O = 601 _ 
6o 1' and ~2 2 = 7r*(60 2) be the curvature; 602 represents the characteristic class 
of the bundle, then 

~r* dO = d(Tr*O) = do.) 1 - d60 1' = 7r'60 2 - n'*w 2' (132) 
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and therefore 
cos = cos' +dO (133) 

i.e. co 2 and cos' are cohomologous. 
As regards the first Chern class of  the principal circle bundle P(JI~ 4, SO(2)), 

we can re-express the statement of  Remark 15 in a more elegant fashion 
(2~ 4 is related to M 4 by  means of the map (140), Proposition 13). 

Proposition 12'. I f  the first Chern class of  the bundle ~ = p(~4 ,  SO(2)) 
vanishes, i.e. c 1(~) = 0, there exists a connection co l, such that the local 
symmetry group is trivial, i.e. q~Xo = I. 

" 4 i n t o  
Proof o f  Proposition 12. Let the map h : II2(M ) --+ H2(~}/4, 7/) be a homo- 

morphism of  the second homotopy  group o f M  4 into the second homology 
group a n d f E  C°°(I s, M 4) be a representative of  a homotopy  class [a] E II2(M 4, 
Xo) then, by virtue of  (129), 

since ~2  =dco + ½ [co, co] =dco (134) 

Moreover, by virtue of  (131), we obtain A f E  [Aa] E I11(SO(2)) and since 
[II(SO(2)) = 77 every element of  II1(SO(2)) is a multiple of  the generator 7 of  
II1(SO(2)) and hence Aa = m% m E 7/. From (130) and (134) we infer 
f~y col = fz~$ w 1 = m.  4n (cf. Kobayashi, 1956). 

Discussion. An important  point is whether or not one is dealing with discrete 
or continuously variable charge, which amounts to studying the following 
three sets of  equations: 

doo 2 = 0 (135) dco s = 0 (135')  dco 2 = 4rr7 (135") 
o r  

d * c o 2 = 0  (136) d*cos=47r7 * (136')  ° rd*coz=4rr 'Y* (136") 

where (135 ' ) - (136 ' )  stand for Maxwell's equations 3' is the magnetic monopol  
current. By virtue of  the proof  of  Proposition 12 we are led to analyse the 
tbllowing two cases: 

(1) Equation rico a = 0 ( d i v H =  0) is associated with the construction of 
magnetic charge g by means of the first Chern class c 1 (~) E Ha(M 4, • ). The 
pole strength g which is measured to be 

± 
foo2 = m = wa(Zxf) (126) 

4rr d 
S = 

(cf. the adjoining Fig, 7) displays, that m E 7/is both, the value of  the Ctlern 

class c 1(~) and the magnetic charge enclosed in Af. 
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~ a r  magnet 

Figure 7. 

(2) The occurrence of discrete magnetic charge is related to 

Proposition 13. Within an appropriate fibre bundle approach the 
following holds 

1 _ 1 

47r 0 ,82 ~o(s ~) 
where 

¢ : M 4 - + M  4 , ¢ E C=(M4,/17/4), $2 EH2(M 4 ) 

~0 : S 2 ~ S 2, ~0 ~ C=(S 2, R 3) 

and Wa(~) denotes the winding number of ~p about a = 0 E N3. 

(137) 

(140) 

Proof. By 

one obtains 

4), : C : ( M  4 ) --" C2(~ 4) 

f ~,2= f4)*c~2= f co ~ 
q~,S 2 82 ~o,(S 2) 

where ~2  E F2(~ra). Oh account of 

where 

Wa(~O ) = deg/~ = Wo(~) 

, , _  ~ ( x ) -  0 
~ , o t x )  = ii~,-~x ) ~11--- ~(x) 

Wo(~p ) = deg ~p = wa(~o ) with deg ~= "AdZ f CO 2= Wa(Af) 
so,S ~ 

(140) 

(139) 

(138) 

Remark 32. In L~mma 1 and the theorem of page 201 of my paper (v. 
Westenholz, 1971) the erroneous statement '4) is a diffeomorphism' must be 
replaced by (140). 

(Prop. 12) (141) 
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Remark  33. From Propositions 12 and 13 one infers that the dynamical 
coupling constants e or g admit the geometrical interpretation, that, being 
related to the characteristic class ea(~), they are obstructions to tfivialising the 
principal bundle ~. 

Relationship (137) admits the following physical interpretation (Lubkin, 
1971). Suppose the bar magnet of Fig. 7 becomes infinitely thin and infinitely 

Figure 8. 

permeable and centred at a. One thus defines a magnetic monopol field 

H = L (142) 
r 2 

and the half-line which represents the bar magnet may be regarded as a flux 
line. 

Remark  34. By virtue of Dirac's condition, 

e~g =½n (143) 
hc 

the magnetic monopol charge (137) will be used in the sequel to define quan- 
tised electric charge. 

The issue of magnetic monopoles is characterised by equation (135") 
dco 2 = 4rrT, where 7 is the conserved monopol current, i.e. d7 = 0. Within a 
gauge approach to electrodynamics one encounters the difficulty, however, 
that there exists no method for deriving Maxwell's equation (135") from the 
geometric structure P(M 4, SO(2)), since rr* d w  2 = d ~  2 = d ( d ~ )  = 0 yields 
d~o 2 = 0. This difficulty may be circumvented in the use of the bundle 
P(M, SU(3)) as the relevant structure for magnetic monopoles and by associat- 
ing magnetic monopoles with the YM equations (73) dB = 47rw 3. A motivation 
for such an approach to magnetic monopoles is given by the papers of 
Schwinger (1968) and v. Westenholz (1970). In fact, Schwinger's baryon model, 
whose particles are magnetically charged quarks which carry fractional electric 
charge, is based upon the SU(3)-symmetry scheme. On the other hand, Loos 
(1967) has shown the existence of a solution to the YM equations (73) for a 
point charge within a gauge theory with non-Abelian gauge group. We therefore 
regard a monopol field as a non-Abelian gauge field, whose field equations are 
given by (73). 

The formal symmetry between electric and magnetic charge expressed 
through equations (t35")-(136") is violated by the great disparity between the 
charge units. Indeed, on account of Dirac's condition (143), e2/hc = a entails 
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the least value allowed for g2 to be g2/hc = 137/4. Thus, ultimately, the equa- 
tion d¢o 2 = 4~rj only formally accounts for magnetic monopotes and should be 
abandoned in favour of  the YM equation dB= 4rico 3. The great strength of 
magnetic attraction indicated by g2/hc suggests that some (super) strong inter- 
action is associated with the aforementioned approach. Moreover, the transi- 
tion from a non-spherically symmetric and non-Abelian generalised Maxwell 
formalism to a framework consistent with a spherically symmetric monopol 
field H = g/r 2 might possibly account for a so-called breakdown mechanism of 
the unitary symmetry SU(3). Mathematically this would amount to a reduction 
of the structure group SU(3) to SO(2), 

f :P(M 4, SO(2)) -+ P(M 4, SU(3)) (144) 

In order to recover the relevant geometrical objects for the description of the 
corresponding physical fields it suffices to consider the relationships 
U~ = A~ + iBea; w I = a 1 +/31, ~2 ~ = a 2 +/32 and equate all imaginary com- 
ponents equal to zero. The resulting objects correspond to SO(2). These rather 
sketchy arguments will be developed more explicitly elsewhere. 

Remark 35. The appropriate fibre bundle mentioned in Proposition 13 now 
turns out to be the principal bundle P(M 4, SU(3)). 

The relationship which associates the dynamic charge coupling constant 
with the interaction intensity reduces to a formula between the linking number 
and the winding number according to 

Proposition 14. Let f =  f , S  1 and g = g,S a, g, f E C1(R3) be two loops as 
specified in Proposition 10 (cf. Figs. 4 and 5), then 

l(f, g) = k. wa(~o) k E ~. (144) 

Remark 36. Formula (144) makes physical sense, since [k] = cm -1, 
[wa(~o)] = charge and [l(f, g)] = [fiR. cL~] = charge, cm -1. 

Proof of Proposition 14. We have to show the following relationships to 
hold: 

w E  a) = Wa(~O) (145) 

w(f a) = w(fc, ac) (146) 
and 

weft, ac) = tq;,g) 

. f  = f , s  1 =- L 

f ( s  1) 

g * S l = g ~[ It \ ~ - $1 

\ 

Figure 9. 

(147) 
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That is, in the most general case: 

n 

l(f, g) = ~ w(P i, ~o) -g ~. w(Pi, ~o) = k .  wa(~) (147') 
P~M ng(s 1) i=1 

where M C)g(S 1) = {P1, e 2 . . .  Pn;Pi EM}. 

(a). Proof of(145). Consider ,the m a p p i n g f  e : S 1 -+ fc(S 1) = Sc C S 2 where 
fo =J~ $1 ~ f (~x)  which rotates S a (Fig. 9), d e g f =  m~ Let ~ S  2 -+S 2, 
so E C~(S 2, R 3) be such that (~/Se) o h c =re where S I ~ S c ~ S c  (cf. Fig. 9). 

& 
The map he is defined by deghc = 1 (in particular i f c  = 0, then so~So =ff 

and hc = identity). We claim: 

degso = deg) 7 (149) 

Indeed, let c = 0, then (149) is trivial, since w(a, f )  d___ef deg/a, where 

i ( x ) -  a f(x) 
U(x) = [ ~ x )  - all = ~ = 37(x) ~ ~o(a, ~) = deg f =  deg ~o since ~o/So = f 

c P 0 implies degfc = deg (~o/Sc o hc) = deg ~o/Sc o deg hc = deg so. 
(b) Proof of(146)  

w(f, a) = w(fc, ac) ¢' 3 a homotopy  {It,  Gt) such that Fo = )~ Go = a; 

Fl = fe, Gl = ac 

Such a homotopy  is given by 

F~(s) = tfc(s ) + (1 - t)~s) Vs E S 1 

and 

G~,s) = tac + (1 - t)a, since ac = ac(S) ) are constant functions 

and a = a(s) ) Ggs) is a constant function for s 

(c) Proof o f  formula (148). By virtue of Proposition 11 and (119) we 
introduce the following sets: 

A = ( P E M  O g(Sl) l d~g p°ints in the same l = {p1, p 2 . . . .  Pn ÷} 

dg points in the opposite . . . .  
{ P ' E M n g ( S 1 )  [ dt direction as wp J 

[ -2-  . . I = { P 1 , / ' 2 - - - P n  -) B 
I at direction as wp 1 

That is, the integers n + and n - are associated with A and B respectively. This 
leads us to distinguish between the following two cases: degfc = 1 (fc is a 1-1 
function) and degfc = m E 7], m > 1. Now, degfc = 1 implies w(Pc, fc) = deg/a 
=1, where 

f ( s )  - a~ 
u ( s )  = 

I l l ( s )  - a~t t  
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and 

w(Pi, fc)  = 
Pi~-A 

Z w ( e ; f c )  = 
p'iEB 
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n + 

E w ( ? i , L )  = n + 
i = l  

Ft- 

2 w(e; ,L)  = n -  
i=1 

,- =~ (147) 

l ( f , g )  = 

n÷ n-  

w ( ? i , L )  - w ( ? : , L )  
i=1  i = 1  

Formulae (145) and (146) yield 

w(P, fc)  =- w(ae, fc)  = Wa(~ o) (148) 

I f  one substitutes (148) into (147) one infers l(f, g) = (n + -  n-)wa(~o) = kWa(~O ) 
which equals relationship (119), since wa(~o ) = deg fc  = 1 by assumption. I f  - 

d e g f e = m ~ d e g f e = d e g l ~ = w ( P ,  f e ) = m >  l V P E ) ~ I  

deg fc  = m means: YP E g(S 1) N M, P stands for the set P = (P1. • • Pro} such 
that w(P, fc)  = Z~inl=l w(Pi, fc )  = m.  

=1 
By definition o f n  + and n -  we get 

n + = ~ w(P, re) = n i m, n -  = ~ w(P, re) = n2 . m  
P~VI N g(S) ~ P EM A g(S) =m 

p E A  P E B  

therefore 

l ( f , g )  = n + - n -  = n l m  - n2.  m = (nl  - n 2 ) . m  

and by virtue of  (148) one obtains l (f, g) = (n 1 - -  n2)Wa(~°), n 1 - n2 f f  ~-, q.e.d. 
R e m a r k  37. Relationship (144) is a special case of  Ngi l(fc, gi) = k .  Wa(¢) 

where ~k = Ni ki  (gi denotes the number  of  field lines through a). Clearly 
IcI = 1 /~  Ikil, [~  Ikil] = cm -1, where c E [ -1 ,  1]. In fact, Icl --" 0 (c • 0) gives 
rise to an increasing number of  field lines gi which intersect with Me = c2 
(bMc = fc)  (refer to Fig. 9). 

Discussion o f  Proposition 14. The relationship 

f ~92 = Wa(~) = 0 (150) 
4zr 

S2=e~ 

implies that (a) no quantised charge is inside S z and (b) l( f ,  g) = 0, which 
obviously amounts to Lx = e]uAu = 0. In fact, the dynamic coupling constant 
e which is given by (137) or (141')  (cf. Remark 33) vanishes. Thus (150) is 
consistent with Remark 33 where charge was responsible for the obstruction 
to trivialising the principal bundle under consideration. Conversely, l( f ,  g) = 0 
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yields (a) k = 0 or (b) Wa(~O) = 0. Case (a) implies the cardinality of the sets A 
and B to be the same. Case (b), Wa(~O ) = 0, amounts to 

dive? = 0 (151) 

which is just a special case of d'co 2 = 0 (equation 136). Consequently, the un- 
dressed or bare charge eo which is involved in electromagnetic interaction pro- 
cesses will be identified with continuously variable (unquantised) charge 

* ~ 2 = 4 " e 0 =  f *Eqdx i ^dx /  
C 2 C 2 

x ° = const. (152) 

The charge (152) will be associated with a multiply connected topology 
trapping electric lines of force (v. Westenholz, 1971; Misner & Wheeler, 1957) 
in the following sense: If the interiors of two solid 2-spheres S 2 of equal radius 
in the T = const, hyperplane are removed and the appropriate points on the 
surfaces~ S 2 are identified, one obtains the pattern of an electric dipole, i.e. 
d ive  = 0, provided the charge e and - e ,  respectively, are assigned to these 
spheres. Thus, charge appears as a non-local manifestation of source-free 
electrodynamics in a multiply-connected topological space. Such a non-local 
picture of charge is familiar from vacuum polarisation whose net effect is to 
spread out the effective charge over distances of the order h/me. This character- 
ises non-locality. 

Remark 38. The validity of equation Wa(~O) = 0, which accounts for the 
absence of quantised charge in S 2, by no means contradicts the existence of 
continuously variable charge (equation (152)). On the contrary, this type of 
charge, being a manifestation of source-free electrodynamics, is, by our fore- 
going construction, associated with an empty S 2. 

Within the framework of  YM and AB fields the interaction constant 
a = e2]he can be estimated. This will be established now. We assume that 

(a) units of particle physics (i.e. quarks) are represented by elementary 
loops (cf. Fig. 4); 

(b) these elementary loops are supposed to be quantised in the following 
sense: let 

Au = (~0AB, AAB) (153) 

denote the 4-potential representing an AB field, where 

~c 30 (154) 
A A B  = e ~x  k 

and 

he aO h O0 
~AB = - -  - ( 1 5 5 )  

e 3 x  ° e 3 t  

ua(x u) is a continuous function of space time. Then the following holds: 
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Proposition 15. The vector potential A-~AB produces the quantised flux 

hc 
~AB = - -  (156) 

e 

and the scalar potential (155) yields the quantity 

019 AE 
Ot k h (157) 

where k = e2/(2mc z • r) is a dimensionless constant. AE denotes the 
energy uncertainty during the intermediate state of some virtual pro- 
cess which is characterised in terms of AB fields. 

'Proof by quotation'. By virtue of the correspondence principle between 
AB fields and virtual processes, we denote by 

AE = AxE + A2E (158) 

the energy uncertainty associated with the fictitious intermediate state, where 

A1E'~I  f ¢ 'd l ;  c.dl=Z, dx  
el=f 

denotes the steady current around the loop f. 

kx. A2E = eA~0AB; 

e 
and I = - - (159) 

T 

(160) 

A~0AB is the uncertainty of the potential difference (Furry & Ramsey, 1960). 
AlE is associated with the vector potential AB effect; A2E is the contribu- 

tion of the uncertainty due to A~0AB. Now, since 

S =e  ~ ~AB(t). dt = 2 f T. dt (161) 

and 

AtPAB = k2~0A]3; 2T"~ A2E (162) 

we have (160). Moreover, 

h0de 0t = eh--(k3 - ~  -~ ) (163) 

k3 unknown. The uncertainty in the phase difference can be shown to be 

AO = eat .  A~0AB (164) 
h 

where At denotes an infinitely short lifetime. By (160) and (164) we obtain 
(Ava/At) = kl(A2E/h), by (155) and (163), A~OAB = k2ka(A2E/e) ~ kl  = k2. k3. 
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Now, for a fixed potential ~PAB, the evaluation of A~OAB and hence of k2 is 
possible. Therefore it remains to either determine k 1 or k 3. If ~OAB is brought 
to the fixed potential ~0AB = (e/r)ls, = e with respect to the AB-scalar potential 
effect, then k 3 = ~/~bAB and conversely. 

o o  

eh 2rr 
= 2rr t Hrdr  = 

2mc" r 
R 

denotes the flux 

and 

by 

= -r----7 r - r-S = 4"--~ ~ dffx ~ 1 ~ )  

~AB = - -  
e 

(proposition 10) (110) 

e h 
~OAB(t)" h " A2E - ka (163) 

That is, in considering virtual states which violate the energy principle by an 
amount of (164), ~ "~ 2mo cz, one obtains 

I e2 = ~ =2moc 2 (165) ka = 2 . m o e 2 . r  C~A B S 2 

In terms of formulae (155) and (163) this yields the correct value of the fine 
structure constant, since 

- - =  _ _  e 2 ]  00 e 2 2mo c2 1_ b____OO _ e = ~C-C s2 
at 2mo c2" fi ~ c  a t -hc~OAB (166) 

Remark 39. In the approach to elementary particle physics in terms of 
quantised flux loops the reverse situation to Dirac's electron theory applies in 
that the magnetic moment/~ = eh/2mc is assigned to these loops (of. Jehle, 
1971). 

Remark 40. An a posteriori justification for a description of interaction in 
terms of AB fields and magnetic charge is given by A0 = (e .g/r2)r 2 . A (cf. 
Lubkin, 1971) which represents the AB phase shift around the loop f ( rZA 
denotes the area enclosed by the loop f) .  It is 0 forg = 0 which corresponds 
to the absence of interaction. 

Discussion ofPr_oposition 15. During a virtual state corresponding to the 
interaction HI = e~7UOAu, the AB potential A ~  gives rise to the electro- 
magnetic interaction constant (e2/h. C)[s 2 provided one applies the potential 
~o = (e/r)ls~ = e to the AB-device which corresponds to the scalar effect. The 
value of  the potential equals the potential of  points on S 2 with respect to 
an AB source located at the origin. Now, consider the AB fields (25), 
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¢02 = E i dx i dx ° + *H# dx i dx i, and (26), , ~ 2  = Hi dx i dx o + *Ell dx i dx], 
where d ~  2 = d * o 3  2 = 0 and let 

(a) x ° = const. The contributions of (25) and (26) are given by 

~13 = f *Hi/dxidx/  (167) 
¢2 

and 

4tree = ~ *Eijdxidx j (152) 
C 2 

the AB-fiux and undressed charge, respectively. 
(b) dx ° ~ 0 implies 

Ei dx i dx ° (: 0 (168) 

and 

H/dxidx  ° ~ 0 (169) 

This entails that the interaction process, which is defined by the quantities 

l ( f , g )=  I H i ' d x i  (109) 
g 

and 

mc 2 = e f Ei .dx  i (170) 

is described, during an infinitely~lort lifetime dx °, by the AB fields (25) and 
(26). That is, the magnetic field H = -(I/4rr) grad ~2 mediates the interaction 
between some quark represented by f =  f , S  1 and the photon field, whose con- 
tribution to the interaction is given by AlE. The electric field determines the 
energy uncertainty A2E by (170). As regards the total energy violation during 
the fictitious intermediate state, the following holds: The interaction energy 
HI = ej~. A t can be associated with eight possible virtual processes whose 
constituents are e +, e -  and photons: 

e - ~ e - + 7  e - + 7 - + e  - e + ~ e + + 7  e + + 7 ~ e  + 

,),-~ e+ + e - O ~ 7 + e + + e  - e+ + e - ~ ,  3, + e+ + e - ->  0 

These eight processes are represented by essentially one single type of Feynman 
graph. Proposition 15 refers to those of  these processes which do not satisfy 
energy conservation, i.e. 7 + e + + e -  ~ 0 and 0 -~ 7 + e + + e-. In both cases 
AE ~ 2too e2 provided we assume the emission or absorption of very soft  
photons. 

Remark 41. There is no Lorentz force acting during the intermediate state, 
since eE (e/c)[v, ~ = 0 for AB fields. 
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Remark 42. There is a 'source lepton' located at 0, whose magnetic dipole 
field lines correspond to loops g = g .S  1 (i.e. these field lines represent quantised 
flux lines). The field lepton e-  produces a steady current through the loop 
f = f . S  1 which gives rise to the f ie ld/ / / .dx i. Thus, some field lines due to the 
AB effect will coincide with field lines due to the current through f. 

Finally we wish to study some typical virtual process, say e -  + 3' ~ e-. We 
proceed as follows: 

(I) wa(~) = O, i.e. l(f, g) = 0 holds all the time. There is no interaction at 
all, which corresponds to the transition e-  ~ e-, i.e. the trivial reaction 
whose scattering operator is S = 1. 

(II) The interaction process decomposes into 
(1) The initial state. The scattering of the two particles e -  and 7 is 
represented by the Feynman graph (Fig. 10). During the initial state, 
the non-local bare charge e 0 = e i is associated with the source-free 
Maxwell field (*~o 2, c2) in terms of 

(*~2, c2) ~ ~ . ~ 2  = 47re o 
c 

H2(M 4) x H2(M 4) ~ R ( 171 ) 

Figure 10. 

f 

(2) The intermediate state. As a result of the interaction HI = e]UA u or 
equivalently l(f, g) ~ O, wa(~o) ~ O, the following holds. By virtue of its 
interaction with the radiation field, the particle e -  has acquired the 
electromagnetic mass 6m as a consequence of the field H, which exists 
during dx ° :# 0 (Fig. 6), my2~2 = ½ f H 2 dax ~ 6ml (v is the velocity of 
the electron - e  around f durin~ the virtual state (cf. Remark 45). The 
contribution 6m2 stems from E, therefore Hrad = ½ f (172 + I-12) d3x and 
e e x  p = e 0 + B e ,  m e x  p = m 0 + ~ m .  

(3) The final state. The 'dressed' charge which the particle has acquired 
during the intermediate state is described by virtue of 

Proposition 16. The dressed charge ef = e o + 6e which corresponds to 
the virtual process e -  + 3' ~ e -  is given by 

41ref= ~ * c o 2 = f  dxlAdx2=const .  ( t73) 
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Proof. The radiation field corresponding to the intermediate state is subject 
to the condition 

3 X  : ix60 2 = ix*cO 2 = 0 (174) 

where X = (X o, (e/4~r)(E A ~r)) = (Xo, S) (S: Pointing vector). 

Rank 602 < 4 
Rank ,605 < 4 i.e.det (F~v) = det (*Fgv) = 0 

and the skew-symmetry o f f e r  and *F~v implies the rank o f F  to be even, i.e. 
Rank 602 = 2 or 0. Since neither 602 nor ,602 are non-vanishing fields, they 
must be monomials o f  the form 

:,602 = dx i A dx j (175) 

Clearly 

d60 2 = d '60 2 = 0 (176) 

Since "6o 5 = *Eij dx i dxi, relationship (175) represents a uniform electric field 
in the x-direction, i.e. *E12 = Ea = E2 = 0, *Eza = E1 = const. 

Discussion o f  Proposition 16. By equation (173) it turns out that the dressed 
charge as defined by relationship (171) is again non-local in character. This 
corresponds physically to the polarisation phenomenon where the charge e o, 
as a result o f  the interaction, surrounds itself by a cloud of  charged particles. 
Some of  these escape to infinity leaving a net charge of  - f i e  in the part of  the 
cloud spread out  over a distance ofh/mc.  

Remark 43. By virtue of  the foregoing reasonings, the radiation field in- 
volved in the interaction must take the form ( 00 0 E 0 0 -~7 ,Fur 0 0 ~IE 
Fur = = lnt = 1 

0 0 0 r/E 0 0 

nE O nE O 

Remark 44. Equation (174) states that the radiation field is associated with 
the direction defined by the Poynting vector, i.e. 

i(S)60= Fuv(XU dx v - X v dx u) = 0 X u = (S °,  ~ )S  ° = IT:I = Iffl ~ Fu~X ~ = 0 

That is, the flux of  Fur through a plan which contains S vanishes. 
Remark 45. The quantity 5m is assumed to be of  electromagnetic origin 

and can be obtained formally as follows. Set 

m 5m 2 
T =  ~ v 2 v 2 where ~ v = 1/2 f H2" d3x (177) 

J ( ~ d r i  r2 _ 2.  " =cons t  sin3 O d d  f d ¢ ~ b m  <co  (178) 
1 0 0 
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The magnetic field 

-~ ev sin O 
t i l l=4 . r2 (179) 

satisfies Biot-Savart 's  law and acts during the short lifetime dx ° ¢ 0. The quan- 
tities (177) and (178) correspond to the uniform mot ion  of  the electron - e  
in f which produces the field (179). 

Conclusion 

It is known that  in electron theory one distinguishes between the charge o f  
the undressed and the experimental  electron. The factors o f  conversion are 
logarithmically divergent. Because o f  this it is claimed that  only the renormal- 
ised theory has any physical significance. However, within our continuum 
picture it turns out  that  there will be no infinite factor of  conversion and thus 
no renormalisation will be needed. 
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